S

The art of Software Intégration

Rafael Priego Porcuna Moone Boy
S HD

Online Engineering Offsite, September 2014

The art of software integration

* We all have to integrate systems in our day to day basis

* Software integration is an “art” that requires knowledge, experience, intuition and creativeness

Contents

Strategies for integration

Integration techniques

Implementation

References, Q&A

Strategies for integration

Choosing your strategy

Cooperation between teams

Overlap between models

Allow independent development

Cost of the integration

Shared Kernel

* Intent/Problem: Split one team in multiple teams, creation of different domains in the same application

* Applicability: Unidirectional and bidirectional communications, both teams report to the same management
and ideally are located close to each other

Known use: Feature teams

Pros: Reduces overhead of Continuous Integration in big teams, shared model and domain language
Cons: Extra coordination required

—_—

Customer/Supplier

* Intent/Problem: Handle unidirectional dependencies, when the downstream system needs data from
upstream

* Applicability: Unidirectional dependencies and both systems share the same goals
* Known use: analytics systems

* Related strategies: Conformist, Anti-corruption layer, Open host

* Pros: Translation easier due to be unidirectional

* Cons: Downstream system can be limited by the upstream system, difficult to take into practice when the

supplier serves several customers g §/<

Conformist

* Intent/Problem: Difficulty to follow customer/supplier approach when they follow different directions
* Applicability: Dependencies are unidirectional and the models are not very distant
* Related strategies: Customer/Supplier, Anti-corruption layer

* Pros: Shared domain language between the teams, allow development independently

T e

* Cons: Limits the creativity of downstream system

Anti-corruption layer

* Intent/Problem: Difficulty to follow customer/supplier approach when they follow different directions
* Applicability: Unidirectional and bidirectional communication. Interfaces are not really big.

* Known use: Replacing legacy systems. Protection against constant interface changes

* Related strategies: Customer/Supplier, Conformist

* Pros: Allow development independently of the other system

* Cons: Investment in translation required, changes in one model can lead to high cost in translation to the
other |

your subsystem

Elegant ‘

Class = Service A - Adapter A . Complicated | .
' ‘ Interface Irrellevant
C (A | stuff
1 Translator 1 Facade
Very Expressive) L H Mossy)
| Cless | Translator2 | " Class

Even More ‘ . .

Good Skt _| ++ Service B - Adapter B You don't

Ok, some stuff we | even want to __
‘ know
should probably .]
refactor

Open host services

* Intent/Problem: System that will talk to multiple clients

* Applicability: Unidirectional and bidirectional communications, multiple clients interact with a system
* Known use: Banking

* Related strategies: Customer/Supplier

* Pros: Enables a published language, interaction with multiple clients without model alterations

* Cons: Hard to design a protocol to be understood by multiple systems

PUBLISHED LANGUAGE

| 4 | 1 | 1 | 4
v | v | v | v

Separate ways

* Intent/Problem: Integration cost is really high and doesn’'t offer much value
* Applicability: Integration is not needed or there is a work around

* Known use: Links

* Pros: Allow independent development and saves the cost of integration

* Cons: Ifintegration is needed, translation layers will be more complex

Context 1

"/

1

Context 2

Collaboration |Bidirectional |Shared Integration
Ianguage cost

Shared Kernel

Customer /
Supplier

Conformist

Anti-corruption
layer

Open host
Separate ways

Yes

No
No

No
No

No

No
Yes

Yes
No

12

Yes

Yes
No

Yes
No

Low

Medium
High

High
None

sky

Strategies for integration

keep model unified by

/ A

CONTINUOUS

INTEGRATION SHARED KERNEL
BOUNDED

CONTEXT

CUSTOMER/

7

relate allied contexts through SUPPLIER
P TEAMS
. L _—relate allied contextsas 7
overview relationships with CONTEXT MaP —_

relate unilaterally as

~— >

rmalize relationship as

free teams to go OPEN HosT
\ SERVICE PUBLISHED
translate and insulate with INTERCHANGE

LANGUAGE

SEPARATE
Ways

ANTICORRUPTION
LAYER

13

Integration techniques

REST endpoint

* Read and write as separate services

/ Read
\ .

15

Client-server

* Same protocol for read and write
* Looks simple

* Complex scalability (concurrency)
* Read performance will decrease

* Security

Business
Objects
Model

e

Write

Read

Business
Objects
Model

sicy

Segregating requests and commands

* Different repository access to read and write

* Domain objects will apply the business logic and will apply constraints

* Command Query Responsibility Segregation: message driven integration, eventual consistency
* Notification based integration: asynchronous

* Feed based integration: asynchronous and batch

17

Segregating requests and commands

Business
Objects
Model

Write

Read

sicy

Client-Server Notification Feed based

based integration

integration
Synchronicity Synchronous Synchronous Asynchronous Asynchronous
Read/Write R/W R/W RO RO
Scalabllity Coupled read Decoupled Decoupled of Decoupled

and write read not from
write

Resilience No Read Integrated Integrated
Eventual No Yes Yes Yes

consistency

sky

19

Implementation

How much effort does it take you to implement the happy path of an
interface with other system in comparison with the unhappy path?

A. 50%-50%
B. 80%-20%
C. 20%-80%

Gateway pattern

LOGGING MONITORING

* Retry?
* Logging
* Monitoring

* Error handling

* Throttling GATEWAY THROTTLING

* Timeouts

* Testing: mocking, Chaos Monkey
TIMEOUTS

ERROR
HANDLING

References

References

DINSARGA

delllw Enmulenny In the Heart of Sulw.d

24

Any questions?

