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The art of software integration

* We all have to integrate systems in our day to day basis

* Software integration is an “art” that requires knowledge, experience, intuition and creativeness
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Strategies for integration




Choosing your strategy

Cooperation between teams

Overlap between models

Allow independent development

Cost of the integration




Shared Kernel

* Intent/Problem: Split one team in multiple teams, creation of different domains in the same application

* Applicability: Unidirectional and bidirectional communications, both teams report to the same management
and ideally are located close to each other

Known use: Feature teams

Pros: Reduces overhead of Continuous Integration in big teams, shared model and domain language
Cons: Extra coordination required
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Customer/Supplier

* Intent/Problem: Handle unidirectional dependencies, when the downstream system needs data from
upstream

* Applicability: Unidirectional dependencies and both systems share the same goals
* Known use: analytics systems

* Related strategies: Conformist, Anti-corruption layer, Open host

* Pros: Translation easier due to be unidirectional

* Cons: Downstream system can be limited by the upstream system, difficult to take into practice when the

supplier serves several customers g §/<




Conformist

* Intent/Problem: Difficulty to follow customer/supplier approach when they follow different directions
* Applicability: Dependencies are unidirectional and the models are not very distant
* Related strategies: Customer/Supplier, Anti-corruption layer

* Pros: Shared domain language between the teams, allow development independently

T e

* Cons: Limits the creativity of downstream system




Anti-corruption layer

* Intent/Problem: Difficulty to follow customer/supplier approach when they follow different directions
* Applicability: Unidirectional and bidirectional communication. Interfaces are not really big.

* Known use: Replacing legacy systems. Protection against constant interface changes

* Related strategies: Customer/Supplier, Conformist

* Pros: Allow development independently of the other system

* Cons: Investment in translation required, changes in one model can lead to high cost in translation to the
other |
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Open host services

* Intent/Problem: System that will talk to multiple clients

* Applicability: Unidirectional and bidirectional communications, multiple clients interact with a system
* Known use: Banking

* Related strategies: Customer/Supplier

* Pros: Enables a published language, interaction with multiple clients without model alterations

* Cons: Hard to design a protocol to be understood by multiple systems
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Separate ways

* Intent/Problem: Integration cost is really high and doesn’'t offer much value
* Applicability: Integration is not needed or there is a work around

* Known use: Links

* Pros: Allow independent development and saves the cost of integration

* Cons: Ifintegration is needed, translation layers will be more complex

Context 1
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Strategies for integration

keep model unified by

/ A
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Integration techniques




REST endpoint

* Read and write as separate services

/ Read
\ .
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Client-server

* Same protocol for read and write
* Looks simple

* Complex scalability (concurrency)
* Read performance will decrease

* Security

Business
Objects
Model
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Segregating requests and commands

* Different repository access to read and write

* Domain objects will apply the business logic and will apply constraints

* Command Query Responsibility Segregation: message driven integration, eventual consistency
* Notification based integration: asynchronous

* Feed based integration: asynchronous and batch
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Segregating requests and commands
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Client-Server Notification Feed based

based integration

integration
Synchronicity Synchronous Synchronous  Asynchronous Asynchronous
Read/Write R/W R/W RO RO
Scalabllity Coupled read Decoupled Decoupled of Decoupled

and write read not from
write

Resilience No Read Integrated Integrated
Eventual No Yes Yes Yes

consistency

sky
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Implementation




How much effort does it take you to implement the happy path of an
interface with other system in comparison with the unhappy path?

A. 50%-50%
B. 80%-20%
C. 20%-80%




Gateway pattern

LOGGING MONITORING

* Retry?
* Logging
* Monitoring

* Error handling

* Throttling GATEWAY THROTTLING

* Timeouts

* Testing: mocking, Chaos Monkey
TIMEOUTS

ERROR
HANDLING
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Any questions?




