
The art of Software Integration
Moone Boy Rafael Priego Porcuna

Online Engineering Offsite, September 2014

2

The art of software integration

•  We all have to integrate systems in our day to day basis

•  Software integration is an “art” that requires knowledge, experience, intuition and creativeness

3

Contents

•  Strategies for integration

•  Integration techniques

•  Implementation

•  References, Q&A

Strategies for integration

5

Choosing your strategy

•  Cooperation between teams

•  Overlap between models

•  Allow independent development

•  Cost of the integration

6

Shared Kernel

•  Intent/Problem: Split one team in multiple teams, creation of different domains in the same application

•  Applicability: Unidirectional and bidirectional communications, both teams report to the same management
and ideally are located close to each other

•  Known use: Feature teams

•  Pros: Reduces overhead of Continuous Integration in big teams, shared model and domain language

•  Cons: Extra coordination required

7

Customer/Supplier

•  Intent/Problem: Handle unidirectional dependencies, when the downstream system needs data from
upstream

•  Applicability: Unidirectional dependencies and both systems share the same goals

•  Known use: analytics systems

•  Related strategies: Conformist, Anti-corruption layer, Open host

•  Pros: Translation easier due to be unidirectional

•  Cons: Downstream system can be limited by the upstream system, difficult to take into practice when the
supplier serves several customers

8

Conformist

•  Intent/Problem: Difficulty to follow customer/supplier approach when they follow different directions

•  Applicability: Dependencies are unidirectional and the models are not very distant

•  Related strategies: Customer/Supplier, Anti-corruption layer

•  Pros: Shared domain language between the teams, allow development independently

•  Cons: Limits the creativity of downstream system

Context 1 Context 2

9

Anti-corruption layer

•  Intent/Problem: Difficulty to follow customer/supplier approach when they follow different directions

•  Applicability: Unidirectional and bidirectional communication. Interfaces are not really big.

•  Known use: Replacing legacy systems. Protection against constant interface changes

•  Related strategies: Customer/Supplier, Conformist

•  Pros: Allow development independently of the other system

•  Cons: Investment in translation required, changes in one model can lead to high cost in translation to the
other

10

Open host services

•  Intent/Problem: System that will talk to multiple clients

•  Applicability: Unidirectional and bidirectional communications, multiple clients interact with a system

•  Known use: Banking

•  Related strategies: Customer/Supplier

•  Pros: Enables a published language, interaction with multiple clients without model alterations

•  Cons: Hard to design a protocol to be understood by multiple systems

CLIENT CLIENT CLIENT

PUBLISHED LANGUAGE

11

Separate ways

•  Intent/Problem: Integration cost is really high and doesn’t offer much value

•  Applicability: Integration is not needed or there is a work around

•  Known use: Links

•  Pros: Allow independent development and saves the cost of integration

•  Cons: If integration is needed, translation layers will be more complex

 Context 1 Context 2

12

Collaboration Bidirectional Shared
language

Integration
cost

Shared Kernel Yes Yes Yes Low

Customer /
Supplier

Yes No Yes Low

Conformist No No Yes Medium

Anti-corruption
layer

No Yes No High

Open host No Yes Yes High

Separate ways No No No None

13

Strategies for integration

Integration techniques

15

REST endpoint

•  Read and write as separate services

REST

Read

Write

16

Client-server

•  Same protocol for read and write

•  Looks simple

•  Complex scalability (concurrency)

•  Read performance will decrease

•  Security

Business
Objects
Model

Business
Objects
Model

Read Write

17

Segregating requests and commands

•  Different repository access to read and write

•  Domain objects will apply the business logic and will apply constraints

•  Command Query Responsibility Segregation: message driven integration, eventual consistency

•  Notification based integration: asynchronous

•  Feed based integration: asynchronous and batch

18

Segregating requests and commands

Read

SQL No SQL

Write

Business
Objects
Model

19

Client-Server CQRS Notification
based
integration

Feed based
integration

Synchronicity Synchronous Synchronous Asynchronous Asynchronous

Read/Write R/W R/W RO RO

Scalability Coupled read
and write

Decoupled Decoupled of
read not from

write

Decoupled

Resilience No Read Integrated Integrated

Eventual
consistency

No Yes Yes Yes

Implementation

How much effort does it take you to implement the happy path of an
interface with other system in comparison with the unhappy path?

A.  50%-50%

B.  80%-20%

C.  20%-80%

22

Gateway pattern

•  Retry?

•  Logging

•  Monitoring

•  Error handling

•  Throttling

•  Timeouts

•  Testing: mocking, Chaos Monkey

GATEWAY

LOGGING MONITORING

TESTING

TIMEOUTS

RETRY ERROR
HANDLING

THROTTLING

References

24

References

Any questions?

